Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 17261, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30467371

RESUMO

In High Arctic tundra ecosystems, seabird colonies create nitrogen cycling hotspots because of bird-derived labile organic matter. However, knowledge about the nitrogen cycle in such ornithocoprophilous tundra is limited. Here, we determined denitrification potentials and in-situ nitrous oxide (N2O) emissions of surface soils on plant-covered taluses under piscivorous seabird cliffs at two sites (BL and ST) near Ny-Ålesund, Svalbard, in the European High Arctic. Talus soils at both locations had very high denitrification potentials at 10 °C (2.62-4.88 mg N kg-1 dry soil h-1), near the mean daily maximum air temperature in July in Ny-Ålesund, with positive temperature responses at 20 °C (Q10 values, 1.6-2.3). The talus soils contained abundant denitrification genes, suggesting that they are denitrification hotspots. However, high in-situ N2O emissions, indicating the presence of both active aerobic nitrification and anaerobic denitrification, were observed only at BL (max. 16.6 µg N m-2 h-1). Rapid nitrogen turnover at BL was supported by lower carbon-to-nitrogen ratios, higher nitrate content, and higher δ15N values in the soils at BL compared with those at ST. These are attributed to the 30-fold larger seabird density at BL than at ST, providing the larger organic matter input.


Assuntos
Charadriiformes/metabolismo , Óxido Nitroso/análise , Tálus/química , Animais , Desnitrificação , Solo/química , Svalbard , Tundra
2.
Arthroscopy ; 30(10): 1317-26, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25064757

RESUMO

PURPOSE: The purposes of this study were to identify differences in the biomechanical and biochemical properties among the articulating surfaces of the ankle joint and to evaluate the functional and biological properties of engineered neocartilage generated using chondrocytes from different locations in the ankle joint. METHODS: The properties of the different topographies within the ankle joint (tibial plafond, talar dome, and distal fibula) were evaluated in 28 specimens using 7 bovine ankles; the femoral condyle was used as a control. Chondrocytes from the same locations were used to form 28 neocartilage constructs by tissue engineering using an additional 7 bovine ankles. The functional properties of neocartilage were compared with native tissue values. RESULTS: Articular cartilage from the tibial plafond, distal fibula, talar dome, and femoral condyle exhibited Young modulus values of 4.8 ± 0.5 MPa, 3.9 ± 0.1 MPa, 1.7 ± 0.2 MPa, and 4.0 ± 0.5 MPa, respectively. The compressive properties of the corresponding tissues were 370 ± 22 kPa, 242 ± 18 kPa, 255 ± 26 kPa, and 274 ± 18 kPa, respectively. The tibial plafond exhibited 3-fold higher tensile properties and 2-fold higher compressive and shear moduli compared with its articulating talar dome; the same disparity was observed in neocartilage. Similar trends were detected in biochemical data for both native and engineered tissues. CONCLUSIONS: The cartilage properties of the various topographic locations within the ankle are significantly different. In particular, the opposing articulating surfaces of the ankle have significantly different biomechanical and biochemical properties. The disparity between tibial plafond and talar dome cartilage and chondrocytes warrants further evaluation in clinical studies to evaluate their exact role in the pathogenesis of ankle lesions. CLINICAL RELEVANCE: Therapeutic modalities for cartilage lesions need to consider the exact topographic source of the cells or cartilage grafts used. Furthermore, the capacity of generating neocartilage implants from location-specific chondrocytes of the ankle joint may be used in the future as a tool for the treatment of chondral lesions.


Assuntos
Articulação do Tornozelo/fisiologia , Cartilagem Articular/fisiologia , Engenharia Tecidual , Aminoácidos/análise , Animais , Articulação do Tornozelo/química , Fenômenos Biomecânicos , Cartilagem Articular/química , Bovinos , Condrócitos/transplante , Cromatografia Líquida de Alta Pressão , Colágeno/análise , Módulo de Elasticidade/fisiologia , Fêmur/química , Fêmur/fisiologia , Fíbula/química , Fíbula/fisiologia , Glicosaminoglicanos/análise , Técnicas In Vitro , Tálus/química , Tálus/fisiologia , Tíbia/química , Tíbia/fisiologia
3.
Osteoarthritis Cartilage ; 19(10): 1199-209, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21843650

RESUMO

OBJECTIVE: Fetal cartilage anlage provides a framework for endochondral ossification and organization into articular cartilage. We previously reported differences between mechanical properties of talar cartilage anlagen and adult articular cartilage. However, the underlying development-associated changes remain to be established. Delineation of the normal evolvement of mechanical properties and its associated compositional basis provides insight into the natural mechanisms of cartilage maturation. Our goal was to address this issue. MATERIALS AND METHODS: Human fetal cartilage anlagen were harvested from the tali of normal stillborn fetuses from 20 to 36 weeks of gestational age. Data obtained from stress relaxation experiments conducted under confined and unconfined compression configurations were processed to derive the compressive mechanical properties. The compressive mechanical properties were extracted from a linear fit to the equilibrium response in unconfined compression, and by using the nonlinear biphasic theory to fit to the experimental data from the confined compression experiment, both in stress-relaxation. The molecular composition was obtained using Fourier transform infrared (FTIR), and spatial maps of tissue contents per dry weight were created using FTIR imaging. Correlative and regression analyses were performed to identify relationships between the mechanical properties and age, compositional properties and age, and mechanical vs compositional parameters. RESULTS: All of the compositional quantities and the mechanical properties excluding the Poisson's ratio changed with maturation. Stiffness increased by a factor of ∼2.5 and permeability decreased by 20% over the period studied. Collagen content and degree of collagen integrity increased with age by ∼3-fold, while the proteoglycan content decreased by 18%. Significant relations were found between the mechanical and compositional properties. CONCLUSION: The mechanics of fetal talar cartilage is related to its composition, where the collagen and proteoglycan network play a prominent role. An understanding of the mechanisms of early cartilage maturation could provide a framework to guide tissue-engineering strategies.


Assuntos
Cartilagem Articular/fisiologia , Colágeno/metabolismo , Desenvolvimento Fetal , Tálus/fisiologia , Cartilagem Articular/química , Cartilagem Articular/embriologia , Força Compressiva/fisiologia , Análise de Fourier , Idade Gestacional , Humanos , Proteoglicanas/metabolismo , Estresse Mecânico , Tálus/química , Tálus/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA